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The Prospects for Building Truly 

( 
Intelligent Machines 

J 
lj 

~ C
AN ARTIFICIAL INTELLIGENCE be achieved? If so, how 
soon? By what methods? What ideas from current AI re­

I search will in the long run be important contributions to a 
I 
I science of cognition? I believe that AI can be achieved, perhaps within 

our lifetimes, but that we have major scientific and engineering 
obstacles to hurdle if it is to come about. The methods and perspec­
tive of AI have been dramqtically skewed by the existence of the 
common digital computer, sometimes called the von Neumann 
machine, and ultimately, AI will have to be based on ideas and 
hardware quite different from what is currently central to it. Mem­
ory, for instance, is much more important than its role in AI so far 
suggests, and search has far less importance than we have given it. 
Also, because computers lack bodies and life experiences comparable 
to humans', intelligent systems will probably be inherently different 
from humans; I speculate briefly on what such systems might be like. 

OBSTACLES TO BUILDING INTELLIGENT SYSTEMS 

If we are to build machines that are as intelligent as people, we have 
three problems to solve: we must establish a science of cognition; we 
must engineer the software, sensors, and effectors for a full system; 
and we must devise adequate hardware. 

David L. Waltz, a professor of computer science at Brandeis University, is senior scientist and 
director of advanced information systems at Thinking Machines Corporation. 
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192 David L. Waltz 

Establishing a Science of Cognition 

We have no suitable science of cognition. We have only fragments of 
the conception, and some of those are certainly incorrect. We know 
very little about how a machine would have to be organized to solve 
the problems of intelligence. Virtually all aspects of intelligence­
including perception, memory, reasoning, intention, generation of 
action, and attention-are still mysterious. However, even if we 
understood how to structure an intelligent system, we would not be 
able to complete the system because we also lack an appropriate 
science of knowledge. For some aspects of knowledge, any compu­
tational device will be on a strong footing when compared with a 
person. Machine-readable encyclopedias, dictionaries, and texts will 
eventually allow machines to absorb book knowledge quite readily. 
For such understanding to be deep, however, a system needs percep­
tual grounding and an understanding of the physical and social 
world. For humans, much of this knowledge is either innate or 
organized and gathered by innate structures that automatically cause 
us to attend to certain features of our experience, which we then 
regard as important. It will be extremely difficult to characterize and 
build into a system the kinds of a priori knowledge or structuring 
principles humans have. 

Engineering the Software 

Any truly intelligent system must be huge and complex. As Frederick 
Brooks argues, writing on his experience building the large operating 
system OS360 at IBM, it is not possible to speed up a software 
project by simply putting more and more people on it. 1 The optimum 
team size for building software is about five people. For this reason, 
and because of the sheer scope of a project of this sort-which dwarfs 
any that have been attempted in programming to date-hand coding 
will certainly be too slow and unreliable to accomplish the whole 
task. Consequently, a truly intelligent system will have to be capable 
of learning much of its structure from experience. 

What structures must be built into a system to allow it to learn? 
This is a central question for current AI, and the answer depends on 
issues of knowledge representation: How should knowledge be 
represented? Out of what components (if any) are knowledge struc­
tures built? 
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Creating the Hardware 

We must be able to build hardware that is well matched to AI's 
knowledge representation and learning needs and that compares in 
power with the human brain. No one should be surprised that the 
puny machines AI has used thus far have not exhibited artificial 
intelligence. Even the most powerful current computers are probably 
no more than one four-millionth as powerful as the human brain. 
Moreover, current machines are probably at least as deficient in 
memory capacity: today's largest computers probably have no more 
than about one four-millionth of the memory capacity of the human 
brain. Even given these extreme discrepancies, hardware will proba­
bly prove the easiest part of the overall AI task to achieve. 

I begin with a discussion of traditional AI and its theoretical 
underpinnings in order to set the stage for a discussion of the major 
paradigm shifts (or splits) currently under way in and around AI. As 
an advocate of the need for new paradigms, I here confess my bias. I 
see no way that traditional AI methods can be extended to achieve 
humanlike intelligence. Assuming that new paradigms will replace or 
be merged with the traditional ones, I make some projections about 
how soon intelligent systems can be built and what they may be like. 

LIMITS OF TRADmONAL AI 

Two revolutionary paradigm shifts are occurring within artificial 
intelligence. A major force behind the shifts is the growing suspicion 
among researchers that current AI models are not likely to be 
extendable to a point that will bring about human-level intelligence. 
The shifts are toward massively parallel computers and toward 
massively parallel programs that are more taught than programmed. 
The resultant hardware and software systems seem in many ways 
more brainlike than the serial von Neumann machines and AI 
programs that we have become used to. 

For thirty years, virtually all AI paradigms were based on variants 
of what Herbert Simon and Allen Newell have presented as "physical 
symbol system" and "heuristic search" hypotheses.2 (See also the 
article by Hubert and Stuart Dreyfus in this issue of Dtedalus.) 

According to the physical symbol system hypothesis, symbols 
(wordlike or numerical entities-the names of objects and events) are 
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the primitive objects of the mind; by some unknown process, the 
brain mimics a "logical inference engine," whose most important 
feature is that it is able to manipulate symbols (that is, to remember, 
interpret, modify, combine, and expand upon them); and computer 
models that manipulate symbols therefore capture the essential 
operation of the mind. In this argument it does not matter whether 
the materials out of which this inference engine is built are transistors 
or neurons. The only important thing is that they be capable of a 
universal set of logical operations.3 The physical symbol system 
hypothesis in turn rests on a foundation of mathematical results on 
computability, which can be used to show that if a machine is 
equivalent to a Turing machine-a simple kind of computational 
model devised by the pioneering British mathematician Alan Tur­
ing-then it is "universal"; that is, the machine can compute any­
thing that can be computed. All ordinary digital computers can be 
shown to be universal in Turing's sense. * 

In the heuristic search model, problems of cognition are instances 
of the problem of exploring a space of possibilities for a solution. The 
search space for heuristic search problems can be visualized as a 
branching tree: starting from the tree's root, each alternative consid­
ered and each decision made corresponds to a branching point of the 
tree. Heuristics, or rules of thumb, allow search to be focused first on 
branches that are likely to provide a solution, and thus prevent a 
combinatorially explosive search of an entire solution space.t Heu­
ristic search programs are easy to implement on ordinary serial digital 
computers. Heuristic search has been used for a wide variety of 
applications, including decision making, game playing, robot plan­
ning and problem solving, natural-language processing, and the 
classification of perceptual objects. Heuristic search has enjoyed 
particular prominence, for it is at the heart of "expert systems," AI's 
greatest commercial success by far. 

"'There is perhaps one critical aspect in which all computers fail to match a Turing machine: the 
Turing machine includes an infinite tape, from which it reads its programs and onto which it 
writes its results. All computers (and presumably humans) have finite memories. 
tCombinatorially explosive problems are problems in which the computational costs of solving 
each slightly more difficult problem grow so rapidly that no computer will ever be able to solve 
them; that is, even a computer with as many components as there are electrons in the universe 
and an instruction execution time as short as the shortest measurable physical event might 
require times greater than the age of the universe to consider all possible problem solutions. 
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In retrospect it is remarkable how seriously heuristic search has 
been taken as a cognitive model. When I was a graduate student in 
the late 1960s, the standard AI view was that for any intelligent 
system, the nature of a problem constrains the nature of any efficient 
solution, and that any system, human or computer, given a problem 
to solve, tends to evolve a similar, or at least an analogous, internal 
structure to deal with it. Thus, it was argued, studying efficient 
problem solutions on computers is a good way to study cognition.4 

Virtually everyone in AI at the time accepted the centrality and 
immutability of heuristic search machinery unquestioningly and 
assumed that learning should be accomplished by evolving, adapting, 
or adding to the heuristics and the knowledge structures of the search 
space. (The exceptions were the "neural· net" and "perceptron" 
researchers, who had been actively exploring more brainlike models 
since the early 1950s. More on this later.) 

It is now commonly recognized that the nature of the computers 
and computing models available to us inevitably constrains the 
problem-solving algorithms that we can consider. Qohn Backus 
introduced this idea to the broad computing community in his Turing 
Award lecture of 1977.5 

) As explained below, it has become clear 
that traditional AI methods do not scale up well and that new AI 
paradigms will therefore be needed. Despite this change in attitude, 
there have been few prospective replacements within AI for heuristic 
search (or for serial, single-processor digital computers) until very 
recently. 

The reasons AI has focused almost exclusively on the physical 
symbol system and heuristic search views are deeply rooted in its 
history and in part reflect the myopic concentration on serial digital 
computers that has characterized all of computer science. The focus 
on heuristic search also reflects the influence of the psychological 
research of the 1950s. AI began at a time when psychologists were 
much enamored of protocol analysis, a way of examining human 
behavior by having subjects give accounts of their mental experience 
while they are solving problems.6 Such psychological research was 
interpreted as evidence that the main human mechanism for problem 
solving is trial and error. AI adapted this model as its heuristic search 
paradigm. In this paradigm problems are solved by sequentially 
applying "operators" (elementary steps in a problem solution) and 
allowing "backtracking," a form of trial and error whereby a 
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program backs up to an earlier decision point and tries new branches 
if the first ones explored prove fruitless. 

It is difficult to see how any extension of heuristic-search-based 
systems could ever demonstrate common sense. In most AI systems, 
problem statements have come from users; the systems have not 
needed to decide what problems to work on. They have had relatively 
few actions or operators available, so search spaces have been 
tractable. Real-time performance hasn't generally been necessary. 
This way of operating will clearly not do in general. Eventually, AI 
must face the scale-up question: Given the immense range of possible 
situations a truly intelligent system could find itself in and the vast 
number of possible actions available to it, how could the system ever 
manage to search out appropriate goals and actions? 

Moreover, as John McCarthy has pointed out, rule-based systems 
may be inherently limited by the "qualification problem": given a 
certain general rule, one can always alter the world situation in such 
a way that the rule is no longer appropriate? For example, suppose 
we offered the rule: 

bird (x) ~ fly (x) (if x is a bird, then x can fly). 

Everyone knows that the rule must be amended to cover birds such 
as penguins and ostriches, so that it becomes: 

not flightless (x) and bird (x) ~ fly (x), where 
"flightless (x)" is true of the appropriate birds. 

However, we also know a bird cannot fly if it is dead, or if its wings 
have been pinioned, or if its feet are embedded in cement, or if it has 
been conditioned by being given electric shocks each time it tries to 
fly. 8 There seems to be no way to ever completely specify rules for 
such cases. There are also serious difficulties in formulating rules for 
deciding which facts about the world ought to be retracted and which 
should still hold after particular events or actions have occurred. This 
is known as the "frame problem." "Nonmonotonic logic," which 
treats all new propositions or rules as retractable hypotheses, has 
been proposed for dealing with these problems.9 However, some 
researchers in this area10 are pessimistic about its potential, as am I. 

By objecting to traditional AI approaches, I am not disputing the 
notions of universal computation or the Turing machine results, 
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which are established mathematically beyond doubt. Rather, I dis­
pute the heuristic search metaphor, the relationship between physical 
symbol systems and human cognition, and the nature and "granu­
larity" of the units of thought. The physical symbol system hypoth­
esis, also long shared by AI researchers, is that a vocabulary close to 
natural language (English, for example, perhaps supplemented by 
previously unnamed categories and concepts) would be sufficient to 
express all concepts that ever need to be expressed. My belief is that 
natural-language-like terms are, for some concepts, hopelessly coarse 
and vague, and that much finer, "subsymbolic" distinctions must be 
made, especially for encoding sensory inputs. At the same time, some 
mental units (for example, whole situations or events-often remem­
bered as mental images) seem to be important carriers of meaning 
that may not be reducible to tractable structures of words or wordlike 
entities. Even worse, I believe that words are not in any case carriers 
of complete meanings but are instead more like index terms or cues 
that a speaker uses to induce a listener to extract shared memories 
and knowledge. The degree of detail and number of units needed to 
express the speaker's knowledge and intent and the hearer's under­
standing are vastly greater than the number of words used to 
communicate. In this sense language may be like the game of 
charades: the speaker transmits relatively little, and the listener 
generates understanding through the synthesis of the memory items 
evoked by the speaker's clues. Similarly, I believe that the words that 
seem widely characteristic of human streams of consciousness do not 
themselves constitute thought; rather, they represent a projection of 
our thoughts onto our speech-production faculties. Thus, for exam­
ple, we may feel happy or embarrassed without ever forming those 
words, or we may solve a problem by imagining a diagram without 
words or with far too few words to specify the diagram. 

WHAT'S TIlE ALTERNATIVE? 

Craig Stanfill and I have argued at length elsewhere that humans may 
well solve problems by a process much more like lookup than search, 
and that the items looked up may be much more like representations 
of specific or stereotyped episodes and objects than like rules and 
facts. 11 
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On the Connection Machine, built by Thinking Machines 
Corporation,12 we have now implemented several types of "asso­
ciative memory" systems that reason on the basis of previous 
experience.13 For example, one experimental system solves m~dical 
diagnosis problems with "memory-based reasoning": given a set of 
symptoms and patient characteristics, the system finds the most 
similar previous patients and hypothesizes that the same diagnoses 
should be given to the new patient. "Connectionist," or neural net, 
models, which I shall describe later, solve similar problems, though in 
a very different manner. While a great deal of research is still required 
before such systems can become serious candidates for truly intelli­
gent systems, I believe that these architectures may prove far easier to 
build and extend than heuristic search models. These new models can 
learn and reason by remembering and generalizing specific examples; 
heuristic search models, in contrast, depend on rules. It has proved 
difficult to collect rules from experts-people are generally not even 
aware of using rules. We do not know how to check sets of rules for 
completeness and self-consistency. Moreover, a finite set of rules 
cannot capture all the possible conclusions that may be drawn from 
a set of examples any more than a set of descriptive sentences can 
completely describe a picture. 

It is important to note, however, that some kinds of knowledge in 
rule-based systems are hard to encode in our memory-based model. 
For instance, as currently formulated, our system does not use 
patients' histories and is unable to figure out that medication dose 
size ought to be a function of a patient's weight. Recent research 
strongly suggests that humans reason largely from stereotypes and 
from specific variations of these stereotypes. Our system does not yet 
demonstrate such abilities. 

IMPLEMENTING ASSOCIATIVE MEMORY SYSTEMS 

In the short run, associative memory models can very nicely comple­
ment AI models. Associative models have been studied for quite a 
while but seldom implemented (except for very small problems) 
because they are computationally very expensive to run on tradi­
tional digital computers. One class of associative memory implemen­
tation is called the connectionist, or neural net, model. Such systems 
are direct descendents of the neural net models of the 1950s~ In them, 
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thousands of processing units, each analogous to a neuron, are 
interconnected by links, each analogous to a synaptic connection 
between neurons. Each link has a "weight," or a connection strength. 
A system's knowledge is encoded in link weights and in the intercon­
nection pattern of the system. Some units serve as input units, some 
as output units, and others as "hidden units" (they are connected 
only to other units and thus cannot be "seen" from either the input 
or the output channels). 

Such networks display three interesting abilities. The first is 
learning. Several methods have now been devised that enable such a 
system, upon being given particular inputs, to be taught to produce 
any desired outputs. The second interesting ability is associative 
recall. Once trained to associate an output with a certain input, a 
network can, given some fraction of an input, produce a full pattern 
as its output. The third interesting property is fault tolerance: the 
network continues to operate even when some of the units are 
removed or damaged. In short, connectionist computing systems 
have many of the properties that we have associated with brains; 

, these systems differ significantly from computers, which have tradi­
tionally been viewed as automatons with literal minds, able to do 
only what they are programmed to do. 14 

These networks can now be implemented efficiently on such 
massively parallel hardware as the Connection Machine system or by 
using custom chips. While associative memory systems have been 
simulated on traditional serial digital computers, the simulations 
have been very slow; a serial computer must simulate each of the 
computational units and links in turn and must do so many times to 
carry out a single calculation. A massively parallel. machine can 
provide a separate small processor for each of the units in the 
associative memory system and can thus operate much more rapidly. 

Stanfill and I have been exploring a functionally similar massively 
parallel method called memory-based reasoning. In this type of 
reasoning, a Connection Machine is loaded with a large data base of 
situations. Each situation in the data base contains both a set of 
attributes and an outcome. In a medical data base, for instance, the 
attributes would be symptoms and a patient's characteristics, and the 
outcome would be a diagnosis or a treatment. Each item in the data 
base is stored in a separate processor. When a new example to be 
classified is encountered, its properties are broadcast to all the 
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processors that hold situations; each of these processors compares its 
situation with the input situation and computes a score of nearness to 
the input. The system then finds the nearest matches to the input 
example and, provided they are sufficiently close, uses the outcomes 
of these matching items to classify the new example. 

Memory-based reasoning systems also have many desirable char­
acteristics. They are fault tolerant; they can generalize well to 
examples that have never been seen in their exact form before; they 
give measurements of the closeness of the precedents to the current 
example, which can serve as measures of confidence for the match. If 
there is an exact match with a previous example, the systems can give 
a decision with certainty. It is easy to teach such systems: one simply 
adds more items to their data bases. 

The complicated part of memory-based reasoning systems is the 
computation of nearness. To calculate the similarity of any memory 
example to the pattern to be classified, each memory item must first 
find the distance, or difference, between each of its attribute values 
and the attribute values of the pattern to be classified. These distances 
in turn depend on the statistical distribution of attribute values and 
on the degree of correlation between each attribute value and the 
outcomes with which it simultaneously occurs. All the distances for 
each attribute must then be combined for each memory item to arrive 
at its total distance from the item to be classified. Thus, computing 
the nearness score involves a great deal of statistical calculation 
across all records in the data base.15 

What is the role of associative memory systems in traditional 
artificial intelligence? While they can substitute for expert systems 
under certain circumstances, connectionist and memory-based rea­
soning systems are better viewed as complements to traditional AI 
than as replacements for it. In one very useful mode, associative 
memory systems can be used to propose or hypothesize solutions to 
complex problems, and traditional AI systems can be used to verify 
that the differences between the problems that are currently being 
attacked and examples in the data base are unimportant. If such 
differences are important, the associative memory systems can pro­
pose subgoals to attempt. Thus, the associative memory process can I 
provide a very powerful heuristic method for jumping to conclusions, l'while traditional AI can be used to verify or disconfirm such 
conclusions. Such hybrid systems could help AI models avoid the 
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problems of searching combinatorially large spaces. Because of the 
computational resources required, the bulk of the computing power 
in an AI system of this sort would probably reside in the associative 
memory portion. 

In the long run, however, such models are still unlikely to provide 
a satisfactory explanation for the operations of human thought, 
though I suspect they will come much closer than AI has. To my 
mind, the best exposition on the ultimate architecture required is 
Marvin Minsky's "society of mind."16 Minsky argues persuasively, 
using a very wide range of types of evidence, that the brain and the 
mind are made up of a very large number of modules organized like 
a bureaucracy. Each module, or "demon," in the bureaucracy has 
only limited responsibilities and very limited knowledge; demons 
constantly watch for events of interest to themselves and act only 
when such events occur. These events may be external (signaled by 
sensory units) or purely internal (the result of other internal demons 
that have recognized items of interest to themselves). Actions of 
demons can either influence other demons or activate effectors and 
can thereby influence the outside world. One can make a simple 
analogy between a society of mind and associative memory models: 
in memory-based reasoning each data base item would correspond to 
an agent; in a connectionist model, each neural unit would corre­
spond to an agent. 

LOGICAL REASONING 

I believe logical reasoning is not the foundation on which cognition is 
built but an emergent behavior that results from observing a sufficient 
number of regularities in the world. Thus, if a society of demonlike 
agents exhibits logical behavior, its behavior can be described by 
rules, although the system contains no rules to govern its operation. 
It operates in a regular fashion because it simulates the world's 
regularities. 

Consider a developing infant. In the society-of-mind model, the 
infant first develops a large number of independent agencies that 
encode knowledge of the behavior of specific items in the physical 
world: when a block is dropped, it falls; when the child cries, its 
parent comes to attend; when the child touches a flame, it feels pain. 
Each of these examples is handled initially by a separate small 
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bureaucracy of agents. Each bureaucracy represents the memory of 
some specific event. A particular agency becomes responsible for an 
episode because of the initial "wiring" of the brain; shortly after an 
agency is first activated, it changes its synaptic weights, so that any 
new event that activates any part of the agency will cause the entire 
agency to be reactivated. When similar events reactivate these agen­
cies, new bureaucracies encoding the similarities and differences 
between the new and the old events are constructed out of previously 
unused, but closely connected (hence activated), agents. After many 
such incremental additions to the society of agents, a child eventually 
develops agents for abstract categories and rules; cuts, pinches, and 
burns all cause pain, and thus other agents that happen to be 
activated in these cases become associated with the concept of pain. 
Eventually, the concepts of the constant conjunction of pain with its 
various causes become the specialty of particular "expert" agents 
responsible for certain regularities in the world. Ultimately, these 
agents become part of the bureaucracy for the concept of causality 
itself. Thus agents come to reason about very general categories, no 
longer necessarily rooted directly in experience, and can understand 
abstract causal relationships. Take pain in the abstract, for example: 
if one breaks a law and is apprehended, one knows one will probably 
be punished; if one does not keep promises, one understands that 
other people may be angry and may retaliate; and so on. 

On the surface it might seem that what is being proposed is to 
replace a single expert program with many expert programs, ar­
ranged in a hierarchy. However, each of the expert agents is 
extremely simple, in the sense that it "knows" only about one thing. 
The experts are connected to a perceptual system and to each other 
in such a way that they are triggered only when the conditions about 
which they are expert are actually satisfied. 

While this may be a satisfactory description of the composition of 
the mind, it is not yet sufficiently precise to serve as a design for a very 
large-scale program that can organize itself to achieve intelligence. 
Programs that operate on the principles of the society of mind may 
well be the end point of many steps in the evolution of the design of 
intelligent systems. I believe that hybrids of associative memory and 
traditional AI programs for logical reasoning show the greatest 
promise in the near term for AI applications. It is possible that they 
will also prove to be useful models of cognition. 17 
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LIMITS OF TRADmONAL COMPUTER HARDWARE 

Researchers' suspicion that current AI models may not be extensible 
to systems with human-level intelligence is not the only force driving 
the paradigm shift toward massively parallel computing models. 
Economic considerations, which transcend AI concerns, are another. 
Today's serial computers have begun to reach limits beyond which 
they cannot be speeded up at reasonable cost. For a serial, single­
processor computer to operate more rapidly than at present, its 
processor must execute each instruction more rapidly. To accelerate 
processing, manufacturers have brought new, faster-acting materials 
into use. They have also shrunk circuits to smaller and smaller sizes 
so as to shorten signal paths, since internal communication speeds, 
and therefore overall processing rates, are limited by the speed of 
light. The smaller the computer, the faster its internal communica­
tions. Because each component generates heat, and because dense 
chips produce more heat than others, ultradense chips of exotic 
materials often require the addition of elaborate and expensive 
cooling systems. All this means that doubling the power of a serial 
machine usually increases its cost by more than a factor of two­
sometimes much more. 

In contrast, parallel designs promise the possibility of doubling 
power by simply doubling the number of processors, possibly for less 
than two times the cost, since many system components (disk storage 
units, power supplies, control logic, and so on) can be shared by all 
processors, no matter how numerous. For example, the Connection 
Machine system contains up to 65,536 processors. Even in its initial 
version, the Connection Machine is very inexpensive in terms of the 
number of dollars it costs per unit of computation; its cost in relation 
to its performance is about one-twentieth that of serial 
supercomputers. * Moreover, the cost of highly parallel processors is 
likely to drop dramatically. Initially, any chip is expensive because of 

·The cost/performance figure is the cost per standard computing operation. The typical 
standard computing operation is either a fixed-point addition or a floating-point multiplication. 
Fixed-point performance is measured in millions of instructions per second (MIPS). F1oating­
point performance is measured in millions of floating operations per second (MFLOPS-­
pronounced "megaflops"). Cost/performance is measured in dollars per MIPS or dollars per 
MFLOPS. 
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low yield (only a fraction of usable chips results from initial produc­
tion) and the need to recover research, design, and development costs. 
The price of chips follows a "learning curve," a drop-off in cost as a 
function of the number of chips f,abricated. Memory is the prime 
example: the cost per bit of memory storage has dropped by a factor 
of ten every five years for thirty-five years running, yielding a cost that 
is one ten-millionth that of the 1950 price--one one-hundred mil­
lionth after adjustment for inflation! Since the processors of a 
massively parallel computer are mass-produced, as memory chips 
are, the cost of a given amount of processing power for parallel 
machines should drop as rapidly as the cost of memory-that is, very 
rapidly indeed. 

The cost of computer systems involves, of course, both hardware 
and software. How is one to program a machine with tens of 
thousands or perhaps millions of processors? Clearly, human pro­
grammers cannot afford the time or the money to write a program for 
each processor. There seem to be two practical ways to program such 
machines. The first, which has been in most use to date, is to write a 
single program and have each processor execute it in synchrony, each 
processor working on its own portion of the data. This method is 
"data-level parallelism." A second way is to program learning 
machines that can turn their experiences into a different code or data 
for each processor. 

Research in machine learning has grown dramatically during the 
last few years. Researchers have identified perhaps a dozen distinctly 
different learning methods.1s Many massively parallel learning 
schemes involve the connectionist, or neural net, models mentioned 
earlier. Connectionist systems have usually been taught with some 
form of supervised learning: an input and a desired output are both 
presented to a system, which then adjusts the internal connection 
strengths among its neuronlike units so as to closely match the 
desired input-output behavior. Given a sufficiently large number of 
trials, generally on the order of tens of thousands, such systems are 
able to learn to produce moderately complex desired behavior. For 
example, after starting from a completely random state and being 
trained repeatedly with a 4,500-word data base of sample pronun­
ciations, a system called NETtaik was able to learn to pronounce 
novel English words with fairly good accuracy.19 
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The central problem to be solved in connectionist and society-of­
mind learning research is the "credit assignment problem," the 
problem of apportioning simple rewards and punishments among a 
vast number of interconnected neuronlike computing elements. To 
show the relevance of this problem to the ultimate goals of AI, I will 
couch the problem in terms of the "brain" of a robotic system that we 
hope will learn through its experiences. 

Assume a large set (perhaps billions) of independent neural-like 
processing elements interconnected with many links per element. 
Some elements are connected to sensors, driven by the outside world; 
others are connected to motor systems that can influence the outside 
world through robotic arms and legs or wheels, which generate 
physical acts, as well as through language-production facilities, which 
generate "speech acts." At any given time a subset of these elements 
is active; they form a complex pattern of activation over the entire 
network. A short time later, the activation pattern changes because of 
the mutual influences among processing elements and sensory inputs. 

Some activation patterns trigger motor actions. Now and then 
rewards or punishments are given to the system. The credit assign­
ment problem is this: which individual elements within the mass of 
perhaps trillions of elements should be altered on the basis of these 
rewards and punishments so the system will learn to perform more 
effectively-that is, so the situations that have led to punishments can 
be avoided in the future and so the system will more often find itself 
in situations that lead to rewards? 

The credit assignment problem has at least two aspects. The 
simpler is the static credit assignment problem, in which rewards and 
punishments occur shortly after the actions that cause them. Such 
systems receive instant gratification and instant negative feedback. 
The static credit assignment problem has been found reasonably 
tractable: units that are active can be examined, and those that have 
been active in the correct direction have their connections with action 
systems strengthened, while those that have been inappropriately 
active have their connection strengths reduced. If the reward or 
punishment occurs substantially after the fact, however, we have a 
temporal credit assignment problem, which is significantly more 
difficult. To solve this problem, a system must keep memories of the 
past states through which it has passed and have the capacity to 
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analyze and make judgments about which earlier states were respon­
sible for the rewards and punishments. Progress on the temporal 
credit assignment problem has been promising, but much remains to 
be done before it can be considered solved.20 

.In my estimation, these learning methods will only be suitable for 
producing modules of an overall intelligent system. A truly intelligent 
system must contain many modules. It seems very unlikely that the 
organization of an entire brain or mind could be automatically 
learned, starting with a very large, randomly interconnected system. 
Infants are highly organized at birth. They do not, for instance, have 
to learn to see or hear in any sense that we would recognize as 
learning. Their auditory and visual systems seem already organized to 
be able to extract meaningful units (objects, events, sounds, shapes, 
and so on). Elizabeth Spelke and her research associates have found 
that two-month-old infants are able to recognize the coherence of 
objects and that they show surprise when objects disappear or 
apparently move through each ~ther.21 At that age they cannot have 
learned about the properties of objects through tactile experience. It 
is not too surprising that such abilities can be "prewired" in the 
brain: newborn horses and cattle are able to walk, avoid bumping 
into objects, and find their mother's milk within minutes of birth. In 
any case, the necessity for providing intelligent systems with a priori 
sensory organization seems inescapable. On what other basis could 
we learn from scratch what the meaningful units of the world are?22 

TIlE FUTIJRE OF ARTIFICIAL INTELLIGENCE 

Any extrapolation of current trends forces one to conclude that it will 
take a very long time indeed to achieve systems that are as intelligent 
as humans. Nevertheless, the performance of the fastest computers 
seems destined to increase at a much greater rate than it has over the 
last thirty years, and the cost/performance figures for large-scale 
computers will certainly drop. 

The effect of a great deal more processing power should be highly 
significant for AI. As claimed earlier, current machines probably have 
only one four-millionth the amount of computing power that the 
human brain has. However, it is quite conceivable that within about 
twenty-five years we could build machines with comparable power 
for affordable prices (for the purposes of this argument, let an 
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affordable price be $20 million, the cost of today's most expensive 
supercomputer). 

The Connection Machine system, currently probably the fastest in 
the world, can carry out the kinds of calculations we think the brain 
uses at the rate of about 3.6 X 1012 bits a second, a factor of about 
twenty million away from matching the brain's power (as estimated 
by Jack Schwartz in his article in this issue of Dcedalus). One may 
build a more powerful Connection Machine system simply by 
plugging several of them together. The current machine costs about 
$4 million, so within our $20 million budget, a machine of about five 
times its computing power (or 1.8 X 1013 bits per second) could be 
built. Such a machine would be a factor of four million short. The 
stated goal of the DARPA (Defense Advanced Research Projects 
Agency) Strategic Computing Initiative is to achieve a thousandfold 
increase in computing power over the next ten years, and there is 
good reason to expect that this goal can be achieved. In particular, 
the Connection Machine system achieves its computation rates 
without yet using exotic materials or extreme miniaturization, the 
factors that have enabled us to so dramatically speed up traditional 
computers. If a speedup of one thousand times every ten years can be 
achieved, a computer comparable in processing power to the brain 
could be built for $20 million by 2012. 

Using Schwartz's estimates, we find that the total memory capacity 
of the brain is 4 X 1016 bytes. The current Connection Machine can 
contain up to two gigabytes (2 X 109 bytes). In today's computer 
world, two gigabytes of memory is considered a large amount, yet 
this is a factor of twenty million short, or a factor of four million 
short for a system with five Connection Machines. 

At today's prices, two gigabytes of memory costs roughly $1 
million, so to buy enough memory to match human capacity would 
cost on the order of $20 trillion, roughly ten times our current 
national debt. Given its long-term price decline of roughly a factor of 
ten every five years, the cost of 4 X 1016 bytes of memory will be in 
the $20 million range within thirty years, so that the time at which we 
might expect to build a computer with the potential to match human 
intelligence would be around the year 2017. * As suggested earlier, 

"Well before the 2017 date, however, mass storage devices (disk units and other storage media) 
will certainly be capable of storing this much material at an affordable price. 
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however, building the hardware may be the easiest part; the need to 
untangle the mysteries of the structure and functioning of the mind, 
to gather the knowledge both innate and learned, and to engineer the 
software for the entire system will probably require time that goes 
well beyond 2017. Once we have a piece of hardware with brain-level 
power and appropriate a priori structure, it still might take as long as 
the twenty years humans require to reach adult-level mental compe­
tence! More than one such lengthy experiment is likely to be required. 

What could we expect the intelligence of such powerful machines 
to be like? Almost certainly they will seem alien when compared with 
people. In some ways such machines will eclipse maximum human 
performance, much as pocket calculators outperform humans in 
arithmetic calculation. The new machines may have perfect recall of 
vast quantities of information, something that is not possible for 
people. (While humans apparently have vast amounts of memory, we 
are quite poor at the literal memorization of words, images, names, 
and details of events.) Unless deliberately programmed in, such 
machines would not have a repertoire of recognizable human emo­
tions. Nor would they have motivation in any ordinary human sense. 
Motivation and drive seem to be based on innate mechanisms 
developed over eons of evolution to ensure that we make species­
preserving decisions-to avoid pain, continue to eat and drink, get 
enough sleep, reproduce, care for our young, act altruistically (espe­
cially toward relatives and friends)-without requiring that we 
understand that the real reason for carrying out these actions is 
species preservation.23 (It is, however, quite possible that it will prove 
useful to endow machines capable of problem solving and learning 
with the ability to experience some analogues of frustration, pleasure 
at achieving a goal, confusion, and other such emotion-related 
attitudes toward emergent phenomena in order that they can gener­
ate useful abstractions for deciding when to abandon a task, ask for 
advice, or give up.) 

AI researchers can grasp the opportunity to build human~level 
intelligent machines only if they find ways to fill prodigious quantities 
of memory with important material. They will be able to do so only 
if AI can produce adequate sensory systems (for hearing, vision, 
touch, kinesthesia, smell, and taste). With sensory systems, AI 
systems will for the first time be able to learn from experience. Such 
experience may initially be little more than rote memory-that is, 
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storing records of the partially digested sensory patterns seen by the 
system. Yet, as argued earlier, the storage of vast amounts of 
relatively literal material may be a key to intelligent behavior. The 
potential for artificial intelligence depends on the possibility of 
building systems that no longer require programming in the same 
sense that it is now required. Then we could overcome the tendency 
of systems development to be very slow because of software engi­
neering difficulties. 

There is also the question of what kind of "body" such an 
intelligence must be embedded in for it to really understand rather 
than to merely simulate understanding. Must the machine be wired to 
have emotions if it is to understand our human emotional reactions? 
If a machine were immortal, could it understand our reactions to our 
knowledge of our own mortality? Intelligent machines might be 
cloned by simply copying their programming or internal coding onto 
other identical pieces of hardware. There is no human analogue to a 
machine that would have experience as a unitary entity for an 
extended period and then, at some point during its "lifetime," 
suddenly become many separate entities, each with different experi­
ences. Exactly what kind of intelligence this would be is therefore an 
open question. 

SUMMARY 

We are nearing an important milestone in the history of life on earth, 
the point at which we can construct machines with the potential for 
exhibiting an intelligence comparable to ours. It seems certain that we 
will be able to build hardware that is a match for human computa­
tional power for an affordable price within the next thirty years or so. 
Such hardware will without doubt have profound consequences for 
industry, defense, government, the arts, and our images of ourselves. 

Having hardware with brain-level power will not in itself, how­
ever, lead to human-level intelligent systems, since the architecture 
and programs for such systems also present unprecedented obstacles. 
It is difficult to extrapolate to future effects from the rate of progress 
that has been made to date. Progress has been very slow, in part 
because the computational models that have been used have been 
inappropriate to the task. This inappropriateness applies most criti­
cally to the problem of learning. Without learning, systems must be 
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handbuilt. We don't know how closely we must match human brain 
details to foster appropriate learning and performance. With the right 
architectures, it is likely that progress, both in the building of 
adequately powerful hardware and in programming such hardware 
(by teaching), will accelerate. I believe that the construction of truly 
intelligent machines is sufficiently likely to justify beginning study and 
policy planning now. In that way we can maximize their benefits and 
minimize their negative effects on society. 
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